Almost sure exponential stability of the Euler–Maruyama approximations for stochastic functional differential equations

نویسندگان

  • Fuke Wu
  • Xuerong Mao
  • Peter E. Kloeden
  • P. E. Kloeden
چکیده

By the continuous and discrete nonnegative semimartingale convergence theorems, this paper investigates conditions under which the Euler–Maruyama (EM) approximations of stochastic functional differential equations (SFDEs) can share the almost sure exponential stability of the exact solution. Moreover, for sufficiently small stepsize, the decay rate as measured by the Lyapunov exponent can be reproduced arbitrarily accurately.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost sure exponential stability of backward Euler-Maruyama discretizations for hybrid stochastic differential equations

This is a continuation of the first author’s earlier paper [17] jointly with Pang and Deng, in which the authors established some sufficient conditions under which the Euler–Maruyama (EM) method can reproduce the almost sure exponential stability of the test hybrid SDEs. The key condition imposed in [17] is the global Lipschitz condition. However, we will show in this paper that without this gl...

متن کامل

Almost Sure and Moment Exponential Stability in the Numerical Simulation of Stochastic Differential Equations

Relatively little is known about the ability of numerical methods for stochastic differential equations (SDEs) to reproduce almost sure and small-moment stability. Here, we focus on these stability properties in the limit as the timestep tends to zero. Our analysis is motivated by an example of an exponentially almost surely stable nonlinear SDE for which the Euler–Maruyama (EM) method fails to...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients

We are interested in the strong convergence and almost sure stability of Euler-Maruyama (EM) type approximations to the solutions of stochastic differential equations (SDEs) with non-linear and nonLipschitzian coefficients. Motivation comes from finance and biology where many widely applied models do not satisfy the standard assumptions required for the strong convergence. In addition we examin...

متن کامل

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011